1. Introduction
In climate change studies, the temporal scales could vary from a very short time interval of 5 minutes (for urban water cycle) to a yearly time scale (for annual water balance computation). Likewise, the spatial resolutions could be from a few square kilometers (for urban and rural watersheds) to several thousand square kilometers (for large river basins). General Circulation Models or global climate models (GCMs) are among the best available tools to represent reasonably well the main features of the global distribution of basic climate parameters. But these models, so far, are unable to reproduce well the details of regional climate conditions at temporal and spatial scales of relevance to hydrological studies. In other words, outputs from GCMs are usually at resolution that is too coarse for many climate change impact studies. Hence, there is a great need to develop tools for downscaling GCM predictions of climate change to regional and local scales.

According to IPCC (WG1 of AR5), downscaling is a method that derives local- to regional- scale (10 to 100 km) information from larger-scale models or data analyses. By definition, downscaling of climate projections is the process of transferring general circulation model (GCM) output to a finer spatial scale that is more meaningful for analyzing local and regional climate conditions (Brekke et al. 2009). Basically downscaling is a method to obtain high-resolution climate or climate change information from relatively coarse-resolution GCMs. Justification for downscaling is easy to find. Downscaling techniques have been designed to bridge the gap between the information that the climate modelling community can currently provide and that required by the impacts research community. Anthropogenic global climate change would lead to changes in large-scale atmospheric features. However, the effect of large-scale feature changes on local surface climate cannot be resolved in the current generation of GCMs, which introduces the need for downscaling.

Many impact models require information at scales of 50 km or less, so some method is needed to estimate the smaller-scale information. Downscaling tries to obtain observed small-scale (often station level) variables and using larger (GCM) scale variables, using either regional climate models, analogue methods (circulation typing), regression analysis, or neural network methods. Future values of the large-scale variables obtained from GCM projections of future climate are then used to estimate the smaller-scale details of future climate. In other words, downscaling techniques are commonly used to address the scale mismatch between coarse resolution GCM output and the regional or local catchment scales required for climate change impact assessment and hydrological modeling.

In recent years, different downscaling methods have been proposed in a number of studies around the world. Of particular importance for the management of water resources systems are those procedures dealing with the linkage of the large-scale climate variability to the historical observations of the surface parameters of interest (e.g., precipitation and
temperature). If this linkage could be established, then the projected change of climate conditions given by a GCM could be used to predict the resulting change of the selected surface parameters for hydrological impact studies.

These notes briefly explain the fundamentals of downscaling methods. Detailed treatment of the statistical method is available in many publications, e.g., Wilby et al. (2004).

1.1 Categories of Downscaling Procedures

Two broad categories of downscaling procedures currently exist: dynamical downscaling (DD) techniques, involving the extraction of regional scale information from large-scale GCM data based on the modeling of regional climate dynamical processes, and statistical (or empirical) downscaling (SD) procedures that rely on the empirical relationships between observed (or analyzed) large-scale atmospheric variables and observed (or analyzed) surface environment parameters. Some recent comparisons of DD and SD techniques for climate impact have indicated that neither technique is consistently better than the other. In particular, based on the assessment of the climate change impacts on the hydrologic regimes of a number of selected basins in the United States, it was found that these two methods could reproduce some general features of the basin climatology, but both displayed systematic biases with respect to observations as well. Further, it was found that the assessment results were dependent on the specific climatology of the basin under consideration. Hence, it is necessary to test different, but physically plausible, downscaling methods to find the most suitable approach for a particular region of interest. However, it has been widely recognized that SD methods offer several practical advantages over DD procedures, especially in terms of flexible adaptation to specific study purposes, and inexpensive computing resource requirements. Several SD techniques have been developed to establish relationships between local weather variables and the large-scale GCMs’ results. Among these techniques, the SD method based on the Statistical Downscaling Model (SDSM) and the stochastic weather generator LARS-WG are widely used for constructing climate change scenarios for daily precipitations and temperature extremes at individual sites using GCM grid point information.
2. Principles of Downscaling

"Downscaling" is based on the view that regional climate is conditioned by climate on larger, for instance continental or even planetary, scales. Information is cascaded "down" from larger to smaller scales. The regional climate is the result of interplay of the overall atmospheric, or oceanic, circulation and of regional specifics, such as topography, land-sea distribution and land-use. As such, empirical/statistical downscaling seeks to derive the local scale information from the larger scale through inference from the cross-scale relationships, using a random or deterministic function \(f \) such that:

\[
\text{local climate response} = f(\text{external, larger scale forcing})
\] (1)

The concept of "downscaling" does not imply that the regional climate would be determined by the large-scale state; for similar large-scale states, the associated regional states may vary substantially. Instead, the regional climate is seen as a random process conditioned upon a driving large-scale climate regime. Of course, one could challenge this view since the small scales undoubtedly have an effect on the large scales as well, and that a proper regionalization should describe the mutual influence of large scales on small scales and vice versa. However, the effect of small scales on large scales is not limited to specific region, but all regions exert this influence. That is, one would have to model all regions, resulting in a global model of increased resolution everywhere. This strategy is pursued in high-resolution time slice simulations, but the computational load makes it inaccessible in most applications. Also, the effect of sub-grid scale influences on the large scales resolved in GCMs is taken care of in a summary, statistical manner by parameterizations.

Downscaling is not really a new approach, even though it is used in a new context, namely specifying expected regional and local climate variations and change. Similar techniques were used in the past decades for deriving finer-scale (local) weather information from numerical weather prediction models and for classifying weather regimes.

The conceptual approach lends itself to (relative) computational simplicity, and is thus attractive in situations where the resources for dynamical models are not available, or where a dynamical model does not explicitly model the predictand of interest. As a result a plethora of downscaling applications have been developed, and while there is methodological similarity, the permutations are diverse to the point of making inter-comparison of the climate change results from separate studies difficult, if not impossible.

The confidence that may be placed in downscaled climate change information is foremost dependent on the validity of the large-scale fields from the GCM. Since different variables have different characteristic spatial scales, some variables are considered more realistically simulated by GCMs than others. For instance, derived variables (not fundamental to the GCM physics, but derived from the physics) such as precipitation are usually not considered as robust information at the regional and grid scale. Conversely, tropospheric quantities like temperature or geopotential height are intrinsic parameters of the GCM physics and are more skillfully represented by GCMs. However, there is no consensus in the
community about what level of spatial aggregation (in terms of number of grid cells) is required for the GCM to be considered skillful.

Formally, the concept of regional climate being conditioned by the large-scale state may be written as

\[R = F(L) \] \hspace{1cm} (2)

Here, \(R \) represents the predictand (a set of regional climate variables), \(L \) is the predictor (a set of large-scale variables), and \(F \) a stochastic and/or deterministic function conditioned by \(L \). In general, \(F \) is unknown and is modeled dynamically (i.e., through regional climate models) or empirically from observational (or modeled) data sets. In some cases \(R \) and \(L \) are the same variables but on different spatial scales. Note that the formulation \(R=F(L) \) implies that the variation of the regional or local variable may be displayed in a phase space spanned by \(L \).

2.1 Assumptions in Downscaling

When using downscaling for assessing regional climate change, three implicit assumptions are made:

1. The predictors are variables of relevance and are realistically modeled by the GCM.
2. The transfer function is valid also under altered climatic conditions. This is an assumption that in principle cannot be proven in advance. The observational record should cover a wide range of variations in the past; ideally, all expected future realizations of the predictors should be contained in the observational record.
3. The predictors employed fully represent the climate change signal.

In the following, an overview of statistical and dynamic downscaling is provided.

3.0 OVERVIEW OF STATISTICAL DOWNSCALING METHODS

Statistical (or empirical) downscaling (SD) methodologies can be classified into three categories according to the computational techniques used: weather typing approaches; regression methods; and stochastic weather generators. In general, these SD methods require three common assumptions (i) the surface local-scale parameters are a function of synoptic forcing; (ii) the GCM used for deriving downscaled relationships is valid at the scale considered; and (iii) the derived relationships remain valid under changing climate conditions.

3.1 Weather typing

The weather typing procedures consist of classifying atmospheric circulation pattern into limited number of classes; simulating weather types using stochastic models; establishing the link of rainfall occurrence to weather type using conditional probabilities; and simulating the rainfall process (or other hydrometeorological processes) using weather types. The interesting features of these methods are the consideration of the linkages between climate on the large scale and weather at the local scale, and the possibility of generating long sequences of daily precipitation at a site based on limited historical data sets. However, weather classification schemes are somewhat subjective. In particular, the main limitation of such procedures is that
precipitation changes produced by changes in the frequency of weather patterns could be inconsistent with the changes produced by the host GCM.

The synoptic downscaling approach empirically defines weather classes related to local and regional climate variations. These weather classes may be defined synoptically or fitted specifically for downscaling purposes by constructing indices of airflow. The mean, or frequency distributions of local or regional climate are then derived by weighting the local climate states with the relative frequencies of the weather classes. Climate change is then estimated by determining the change of the frequency of weather classes.

In the "statistical-dynamical" approach, meso-scale atmospheric models are utilized for simulating a series of typical weather states. The advantage over the former technique is that in this way spatially distributed local climates are specified. Feasibility of this technique has been demonstrated by a series of studies on climate and climate change in the Alps.

3.2 Weather Generators

Weather generators are statistical models of observed sequences of weather variables. They can also be regarded as complex random number generators, the outputs of which resemble daily weather data at a particular location (Wilks and Wilby, 1999). There are two fundamental types of daily weather generators, based on the approach to modeling daily precipitation occurrence: the Markov chain approach and the spell-length approach. In the Markov chain approach, a random process is constructed which determines a day at a station as rainy or dry, conditional upon the state of the previous day, following given probabilities. If a day is determined as rainy then the amount is drawn from a probability distribution.

As defined by IPCC, a stochastic weather generator (WG) produces synthetic time series of weather data of unlimited length for a location based on the statistical characteristics of observed weather at that location. Models for generating stochastic weather data are conventionally developed in two steps. The first step is to model daily precipitation and the second step is to model the remaining variables of interest, such as daily maximum and minimum temperature, solar radiation, humidity and wind speed conditional on precipitation occurrence. Different model parameters are usually required for each month, to reflect seasonal variations both in the values of the variables themselves and in their cross-correlations.

The stochastic weather generator methods are based mainly on the stochastic weather generator models such as WGEN and LARS-WG. These models typically involve the modelling of the daily rainfall occurrences, the description of the distribution of rainfall amount on a wet day, and the conditioning of other weather variables (temperature, radiation, etc.) on the wet/dry status of the day. The climate change scenarios are then stochastically generated based on the linkage between the stochastic model parameters with the corresponding variable changes in the GCM. In general, both generators have a similar structure in which observed data at a given site are used to estimate the parameters of the probability distributions of the daily climate variables (minimum and maximum temperatures, precipitation, and solar radiation). The generators differ mainly in the choice of the probability distributions used. WGEN uses standard distributions (e.g., two-parameter Gamma), whereas LARS-WG employs semi-empirical distributions. One advantage of using a standard distribution is that it will have a smoothing effect on the empirical frequency of the observed data and will only require the
estimation of a few parameters. However, such distribution may not provide a very good fit to the observed data. A semi-empirical distribution, with a larger number of parameters, is more flexible and could accurately describe any shape of empirical frequency distribution. The performance of the WGEN and LARS-WG has been tested using data from a range of diverse climates. The LARS-WG generator was found to be able to describe the observed weather characteristics more accurately than the WGEN. In general, the principal advantage of the stochastic weather generator procedures is that they are able to reproduce many observed statistical characteristics of daily weather variables at a particular site.

For statistical downscaling, parameters of the weather generator are conditioned upon a large-scale state, or relationships can be developed between large-scale parameters sets of the weather generators and local scale parameters. Conditioning on large-scale states alleviates one of the chronic flaws of many weather generators, which is the underestimation of inter-annual variations of the weather variables, and which, to a degree, induces spatial correlation.

3.3 Transfer functions
The regression-based downscaling methods mainly rely on the empirical statistical relationships between large-scale predictors and local-scale parameters. Different approaches in this empirical downscaling category can be identified according to the choice of the mathematical function for describing the predictor-predictand relationship, the computational technique used, or the selection of the predictor variables considered. In general, the main advantage of the regression downscaling procedures is that these methods are simple and computationally less demanding as compared to other downscaling methods. However, the application of regression-based procedures is limited to the locations where good predictor-predictand relationships could be found. Furthermore, similar to weather typing methods, the regression-based techniques assume validity of the estimated model parameters under future climate conditions.

The common approaches found in the literature are regression-like techniques or piecewise interpolations using a linear or nonlinear formulation. The simplest approach is to build multiple regression models relating free atmosphere grid point values to surface variables. Other regression models use field of spatially distributed variables to specify local temperatures or principal components of regional geopotential height fields.

An alternative to linear regression is to use piecewise linear or nonlinear interpolation; geostatistics offers elegant "kriging" tools. The potential of this approach has been demonstrated in many studies, e.g., relating local precipitation to large-scale pressure distributions. An emerging non-linear approach is based on artificial neural networks (ANN), which are generally more powerful than other techniques, although the interpretation of the dynamical character of the relationships is difficult.

3.4 Temporal Variance
Transfer function approaches and some of the weather typing approaches suffer to varying degrees from an under-prediction of temporal climate variability, since only part of the regional and local temporal variability of a climate variable is related to large scale climate variations, while another part is generated regionally. Two approaches for bringing the downscaled climate variables to the right level of variability are in use: inflation and randomization. In the inflation
approach the variation is increased by the multiplication of a suitable factor; a more sophisticated approach, named "expanded downscaling", was developed by Bürger (1996). It is a variant of CCA that ensures the right level of variability. In the randomization approach the unrepresented variability is added as unconditional noise; that is, in the simplest case, the "missing" variance is added in the form of white noise.

3.5 Validation
The validation of downscaling techniques is essential but difficult. It requires demonstrating the robustness of the downscaling under future climates, and that the predictors used represent the climate change signal. Both assumptions are not possible to rigorously test, as no empirical knowledge is available so far. The analysis of historical developments as well as simulations with GCMs can provide support for these assumptions.

The classical validation approach is to specify the downscaling technique from a segment of available observational evidence and then assess the performance of the empirical model by comparing its predictions with independent observed values. This approach is particularly valuable when the observational record is long and documents significant changes in the course of time. An example is the analysis of absolute pressure tendencies in the North Atlantic in which a regression model was fitted relating spatial air pressure patterns to pressure tendency statistics. Using data from the most recent decades, the study successfully reproduced the considerably stormier times earlier this century. Similarly Wilks (1999) developed a downscaling function on dry years and found it functioning well in wet years. However, the success of a statistical downscaling technique for representing present day conditions does not imply legitimacy for changed climate conditions.

3.6 Comparison of downscaling methodologies
There is a paucity of systematic studies that use common data sets applied to different procedures over the same geographic region. A number of articles discussing different empirical and dynamical downscaling approaches have presented summaries of the relative merits and shortcomings of different procedures. These intercomparisons vary widely with respect to predictors, predictands and measures of skill.

A comprehensive study was reported by Wilby et al. (1998) who compared empirical transfer functions, weather generators, and circulation classification schemes over the same geographical region using climate change simulations and observational data. The study considered a demanding task to downscale daily precipitation for six locations over North America, spanning arid, moist tropical, maritime, mid-latitude, and continental climate regimes. A suite of 14 measures of skill was used, strongly emphasizing daily statistics. These included such measures as wet spell length, dry spell length, 95th percentile values, wet-wet day probabilities, and several measures of standard deviation. Downscaling procedures in the study included two different weather generators, two variants of an ANN-based technique, and two stochastic/circulation classification schemes based on vorticity classes.

The results prove to be illuminating, but require careful evaluation as they are more indicative of the relative merits and shortcoming of the different procedures, rather than a recommendation of one procedure over another. In the validation phase of the study the
downscaling results were compared against the observational data, and indicated that the weather generator techniques were superior to the stochastic/circulation classification procedures, which in turn were superior to the ANNs. However, the superiority of the weather generator when validated against the observed data is misleading as the weather generators are constrained to match the original data perfectly. Similarly, the improved performance of the circulation classification techniques with regard to the ANNs is largely a reflection of the measures of skill used and indicates the tendency of ANNs to over-predict the frequency of trace rainfall days. In contrast, when the inter-annual attributes of monthly totals are examined the performance ranking of the techniques is approximately reversed with the weather generators performing especially poorly.

The results indicate strength of weather generators to capture the wet-day occurrence and the amount distributions in the data, but less success at capturing the inter-annual variability (the low frequency component). The important question with this procedure is thus how to perturb the weather generator parameters under future climate conditions. At the other end of the spectrum the ANN procedures performed well at capturing the low frequency characteristics of the data, and showed less ability at representing the range of magnitudes of daily events. The stochastic/circulation typing schemes, being somewhat a combination of the principles underlying weather generators and ANNs, appear to be a better all-round performer.

In application to GCM simulations of future climate, the procedures showed some consistency with the ANN indicating the largest changes in precipitation. However, assessing the relative significance of the changes is non-trivial, and at this level of inter-comparison the results of the climate change application are perhaps more useful in a diagnostic capacity of the GCM which appeared to show differences in the strength of the precipitation-circulation relationship. Studies have demonstrated that a suitably designed analog technique reproduces storm interarrival terms well.

An additional factor not yet fully evaluated in any comparative study is that of the temporal evolution of daily events. In this respect the manner in which daily events develop may be critical in some areas of impacts analysis, for example hydrological modeling. While a downscaling procedure may correctly represent, for example, the number of rain days, the temporal sequencing of these may be as important.

A final point to note with regard to different techniques is that of the relative merits of non-linear and linear approaches. Note that the relationships with precipitation on daily time scales are often non-linear. Some authors have applied multivariate adaptive regression splines (MARS) to approximate non-linearity in the relationships between large-scale circulation and monthly mean precipitation. However, the application of MARS to large volume daily data may be more problematic.

3.7 Predictors in statistical/empirical downscaling

The list of predictands in the literature is very broad and comprise direct climate variables (e.g.: precipitation, temperature, salinity, snow pack), monthly or yearly statistics of climate variables (distributions in wind speeds, wave heights, water levels, frequency of thunderstorm statistics), as well as impacted variables (e.g.: frequency of land slides).
However, outside of passing references in many studies to the effect that a range of predictors were evaluated, there is little systematic work that has explicitly evaluated the relevant skill of different atmospheric predictors. The one commonality between most studies is the use of some indicator of the large-scale circulation.

The choice of the predictor variables is of utmost importance. For example, the downscaled scenario of future change in precipitation may alter significantly depending on whether or not humidity is included as a predictor. The implication here is that while a predictor may or may not appear as the most significant when developing the downscaling function under present climates, the changes in that predictor under a future climate may be critical to determine change. A similar issue exists with respect to downscaling temperature. Studies show that changes of local temperature may not be driven by circulation changes alone, but may be dominated by changes in the radiative properties of the atmosphere. This is a particular vulnerability of any downscaling procedure in light of the propensity to use circulation predictors alone that do not necessarily reflect changed radiative properties of the atmosphere.

A possible solution is to incorporate the large-scale temperature field from the GCM as a surrogate indicator of the changed radiative properties of the atmosphere. Another solution is to use several large-scale predictors, such as gridded temperature and circulation fields. After the availability of homogeneous re-analyses, the number of candidate predictor fields has been greatly enhanced; earlier, the empirical evidence about the variability of regional/local predictands and large-scale predictors was very limited and many studies choose either gridded near surface temperature or air pressure, or both. These "new" data sets will allow significant improvements in accuracy of empirical downscaling techniques.

3.8 Selected Recent Applications of Statistical Downscaling
Methods from two statistical downscaling categories were used by Taye et al. (2013) to investigate the impact of climate change on high rainfall and flow extremes of the upper Blue Nile basin. The main downscaling differences considered were on the rainfall variable while a generally similar method was applied for temperature. The applied downscaling methods are a stochastic weather generator, LARS-WG, and an advanced change factor method, the Quantile Perturbation Method (QPM). These were applied on 10 GCM runs and two emission scenarios (A1B and B1). The downscaled rainfall and evapotranspiration were input into a calibrated and validated lumped conceptual model. The future simulations were conducted for 2050s and 2090s horizon and were compared with 1980–2000 control period. From the results all downscaling methods agree in projecting increase in temperature for both periods. However, the change signal on the rainfall was dependent on the climate model and the downscaling method applied. LARS weather generator was good for monthly statistics although caution has to be taken when it is applied for impact analysis dealing with extremes, as it showed a deviation from the extreme value distribution's tail shape. Contrary, the QPM method was good for extreme cases but only for good quality daily climate model data. The study showed the choice of downscaling method is an important factor to be considered and results based on one downscaling method may not give the full picture. Regardless, the projections on the extreme high flows and the mean main rainy season flow mostly showed a decreasing change signal for
both periods. This is either by decreasing rainfall or increasing evapotranspiration depending on the downscaling method.

Gutierrez et al. (2012) proposed a validation framework using three criteria: accuracy (based on correlation), distributional consistency (based on a two sample Kolmogorov-Smirnov test), and stationarity under global warming (based on a t-test for a historical warm period), building on a k-fold cross-validation scheme to determine the suitability of statistical downscaling methods for climate change studies. The first two criteria are currently being used in similar studies to assess the reliability of statistical downscaling methods in future climate change conditions whereas the latter is a novel approach to assess the robustness of statistical downscaling methods. Concerning the most suitable predictors and geographical domains for climate change studies, the result of an intercomparison validation analysis of different combinations of factors shown that 2m air temperatures are preferable to free-tropospheric temperatures (in particular, temperature at 850 hPa) since, if the latter are applied, results are not reliable and non-robust to warming climate conditions for any of the applied methods. An explanation of this result is also provided, related to temperature inversion episodes in the lower troposphere, with high pressure and low surface temperatures, which are systematically overestimated when using T850 as predictor.

This validation framework was applied to a number of downscaling methods commonly used for downscaling temperature, including analog methods, weather typing techniques, multiple linear regression, and regression conditioned on weather types. Overall, regression methods are most appropriate for climate change studies, although they fail to reproduce the observed winter distribution of minimum temperature. Weather typing methods are less appropriate for climate change studies, as they significantly underestimate the temperatures in moderately warmer conditions.

Analog methods best reproduce the observed distributions, but significantly underestimate the observed values in warm periods, although with magnitude smaller than 10% for a warm anomaly close to 1 degC. This underestimation is found to be critical when considering the warming signal in the late 21st century (differences of the period 2071-2100 w.r.t. 1971-2000 for A1B and 20C3M scenarios, respectively), as given by a state-of-the-art GCM, the ECHAM5-MPI model. In this case, the different warming values resulting from the statistical downscaling methods ranging from 2.5 to 3.7 degC and from 2 to 3 degC, for maximum and minimum temperature, respectively, are in good agreement with the robustness significance values, so the methods detected to be non robust are those leading to wrong climate change signals with low values. For instance, critical differences of approximately 1 degC are found when comparing analog and regression methodologies. Therefore, the proposed test for robustness based on warm historical periods provides an objective criterion for discarding non robust statistical downscaling techniques for climate change future projections. This is the case, for instance, of the analog methods, which should not be used for climate change projection of temperatures in the Iberian peninsula. Note that analyzing the uncertainty due to different GCMs is out of the scope of this paper and here we just present some evidence of the suitability of the robustness test in warm historical conditions to detect non-robust methods when applied to future climate change projections.
Teutschbein et al. (2011) studied the variability of seasonal streamflow and flood-peak projections caused by the use of the following three statistical approaches to downscale precipitation data from two GCMs: (1) an analog method (AM), (2) a multi-objective fuzzy-rule-based classification (MOFRBC) and (3) the Statistical DownScaling Model (SDSM). Simulations indicated that projections of future mean streamflow as well as extreme events such as spring and autumn flood peaks are subject to great uncertainty. Depending on input data, downscaling method, model structures and parameterization, the resulting flood simulations can vary a lot and simulated changes can partly point towards different directions. As a result of these uncertainties, authors were not able to clearly determine whether the total amount of annual streamflow in Sweden will increase or decrease in the future. The potential-change range for the studied river basin was projected to be between -11.7 and +11.6%. Considering individual seasons, the streamflow-change signals were also highly variable but more consistent between different models and methods. Spring flood events are expected to decrease considerably and occur one to two months earlier, mainly triggered by future temperature changes. Autumn flood peaks are rather influenced by precipitation and are projected to increase slightly depending on the precipitation-downscaling method applied.

Results show that GCM simulations as input to hydrological models are a source of large uncertainties. Especially the choice of downscaled precipitation time series has a major impact on the streamflow modeling, which is directly related to the ability of the downscaling approaches to reproduce observed precipitation. Authors considered SDSM to be best able to downscale GCM precipitation during winter and spring. Yet, it is not necessarily the best approach for autumn precipitation. Thus, the reliability of an individual downscaling methods itself should always be taken into account by comparing it to other downscaling methods, which points out the importance of a multi-model approach in climate impact studies. Authors suggested applying ensembles of GCMs and downscaling methods in order to account for as many potential outcomes as possible. Furthermore, one could consider a weighting of the methods according to their performance for current conditions, which would—in this case—give the SDSM approach more influence on the results. Such an approach has recently been successfully introduced to weight RCM simulations based on their performance. A performance-based weighting (e.g., a simple skill-based weighting) could easily be adapted to SD procedures to potentially improve the simulation results.

4.0 Dynamic Downscaling
Dynamic downscaling techniques consist of using the outputs of a global climate model as lateral boundary conditions for more sophisticated models of a limited geographic area and with a higher resolution in space. Dynamical downscaling uses regional climate models (RCMs) to simulate finer-scale physical processes consistent with the large scale weather evolution prescribed from a GCM. In dynamical downscaling, a regional climate model (RCM) uses GCM output as initial and lateral boundary conditions over a region of interest. A RCM is a downscaling tool that adds fine scale (high resolution) information to the large-scale projections of a global general circulation model (GCM). Fig. 2 gives a generalized diagram of a GCM.

According to IPCC, GCMs representing physical processes in the atmosphere, ocean, cryosphere and land surface, are the most advanced tools currently available for simulating the
response of the global climate system to increasing GHG concentrations. While simpler models have also been used to provide globally- or regionally-averaged estimates of the climate response, only GCMs, possibly in conjunction with nested regional models, have the potential to provide geographically and physically consistent estimates of regional climate change which are required in impact analysis.

GCMs depict the climate using a three dimensional grid over the globe, typically having a horizontal resolution of between 250 and 600 km, 10 to 20 vertical layers in the atmosphere and sometimes as many as 30 layers in the oceans. Their resolution is thus quite coarse relative to the scale of exposure units in most impact assessments. Moreover, many physical processes, such as those related to clouds, also occur at smaller scales and cannot be properly modelled. Instead, their known properties must be averaged over the larger scale in a technique known as parameterization. This is one source of uncertainty in GCM-based simulations of future climate. Others relate to the simulation of various feedback mechanisms in models concerning, for example, water vapour and warming, clouds and radiation, ocean circulation and ice and snow albedo. For this reason, GCMs may simulate quite different responses to the same forcing, simply because of the way certain processes and feedbacks are modelled.

Fig. 2: A conceptual diagram of a GCM (Source: IPCC).

GCMs make projections at a relatively coarse resolution and cannot represent the fine-scale detail that characterizes the climate in many regions of the world, especially in regions
with complex orography or heterogeneous land surface cover or coastlines. As a result, “GCMs cannot access the spatial scales that are required for climate impact and adaptation studies” (WMO, 2002). Historically, GCMs have been the primary source of information for constructing climate scenarios and will always provide the basis of comprehensive assessments of climate change at all scales from local to global. GCMs predictions may be adequate where the terrain is reasonably flat and uniform, and away from coasts. However, in areas where coasts and mountains have a significant effect on weather (and this will be true for most parts of the world), scenarios based on global models will fail to capture the local detail needed for impacts assessments at a national and regional level. Also, at such coarse resolutions, extreme events such as cyclones or heavy rainfall are either not captured or their intensity is unrealistically low. The best method for adding this detail to global predictions is to use a regional climate model (RCM). GCMs are typically run with horizontal scales of 300km; regional models can resolve features down to 50km or less. This makes for a more accurate representation of many surface features, such as complex mountain topographies and coastlines. It also allows small islands and peninsulas to be represented realistically, whereas in a global model their size (relative to the model gridbox) would mean their climate would be that of the surrounding ocean. RCMs are full climate models, and as such are physically based. They represent most if not all of the processes, interactions and feedbacks between climate system components represented in GCMs and produce a comprehensive set of output data over the model domain.

A RCM has a high resolution (typically 50 km) and covers a limited area of the globe (typically 5,000 km x 5,000 km). It is a comprehensive physical model, usually of the atmosphere and land surface, containing representations of the important processes in the climate system (e.g. clouds, radiation, rainfall, soil hydrology) as are found in a GCM. A RCM does not generally include an ocean component; this would increase complexity and need more computing power; in any case, most applications for impacts’ assessments require only land surface or atmospheric data. Given that RCMs are limited area models they need to be driven at their boundaries by time-dependent large scale fields (e.g., wind, temperature, water vapour and surface pressure). These fields are provided either by analyses of observations or by GCM integrations in a buffer area that is not considered when analysing the results of the RCM. RCM predictions of ideally 30 years are needed to provide robust climate statistics, e.g. distributions of daily rainfall or intra-seasonal variability. Fig. 3 presents the concept of nested regional climate model.

Many different RCMs are currently available, for various regions, developed at different modeling centers around the world. The different RCMs produce different high resolution scenarios for a given boundary forcing, due to differences in model formulation, but also due to small-scale internal variability generated by the RCM. There has been considerable international effort recently to quantify uncertainty in regional climate change through the inter-comparison of multiple RCMs. The typical grid size of RCM simulations to date has been 25 km or 50 km. However, recently RCM simulations with grid scales below 20 km have become available for Europe and RCMs with grid sizes of 5km or less are being developed at several modeling centers. For example a 5 km RCM has been developed over Japan.
In the following, a widely referred GCM is described first, followed by description of a RCM.

4.1 HadCM3
HadCM3 (*Hadley Centre Coupled Model, version 3*) is a coupled atmosphere-ocean general circulation model (AOGCM) developed at the Hadley Centre in the United Kingdom. It was one of the major models used by the IPCC. HadCM3 does not need flux adjustment (additional "artificial" heat and freshwater fluxes at the ocean surface) to produce a good simulation. The higher ocean resolution of HadCM3 is a major factor in this; other factors include a good match between the atmospheric and oceanic components; and an improved ocean mixing scheme. HadCM3 is composed of two components: the atmospheric model HadAM3 and the ocean model (which includes a sea ice model). The atmospheric component of the model has 19 levels with a horizontal resolution of 2.5 degrees of latitude by 3.75 degrees of longitude, which produces a global grid of 96 x 73 grid cells. This is equivalent to a surface resolution of about 417 km x 278 km at the Equator, reducing to 295 km x 278 km at 45 degrees of latitude. The atmosphere component of the model also optionally allows the transport, oxidation and removal by physical deposition and rain out of anthropogenic sulphur emissions to be included interactively. This permits the direct and indirect forcing effects of sulphate aerosols to be modelled given scenarios for sulphur emissions and oxidants. The oceanic component of the model has 20 levels with a horizontal resolution of 1.25 x 1.25 degrees. At this resolution it is possible to represent important details in oceanic current structures.

Developing, setting up and using a regional model over a specific area of the globe requires a considerable amount of effort from an experienced climate modeller. In addition, RCMs (like GCMs) are usually run on large computing installations. Both these factors effectively exclude many developing countries from producing climate change predictions and scenarios. The Hadley Centre has configured its third-generation Hadley Centre RCM to PRECIS so that it is easy to set up and can be run over any area of the globe on a relatively inexpensive fast PC.

4.2 PRECIS
PRECIS (*Providing Regional Climates for Impacts Studies*) is a regional modelling system that can be run over any area of the globe on a relatively inexpensive, fast PC to provide regional climate information for impacts studies. The PRECIS climate model is an atmospheric and land surface model of limited area and high resolution which is locatable over any part of the globe. Dynamical flow, the atmospheric sulphur cycle, clouds and precipitation, radiative processes, the land surface and the deep soil are all described. The model requires prescribed surface and lateral boundary conditions. Surface boundary conditions are only required over water, where the model needs time series of surface temperatures (sea-surface temperatures, SSTs) and ice extents. If this information is taken directly from a coupled GCM then its coarse resolution means that there could be quite large regional errors in the data, and for coastal points and inland seas they may have to be interpolated or extrapolated which could lead to even larger errors locally. An alternative is to use observed values (at higher resolution) for the GCM and RCM simulations of present-day climate and then obtain values for the future by adding on changes in the SSTs and sea-ice extent and thickness from a coupled GCM.
The Hadley Centre has used the second of the above approaches. Observed SSTs and sea-ice (on a 1° grid) are used with an atmosphere-only GCM for the present-day simulation (which then provides lateral boundary conditions for the RCM present-day simulation). Lateral boundary conditions provide dynamical atmospheric information at the latitudinal and longitudinal edges of the model domain. There is no prescribed constraint at the upper boundary of the model. The lateral boundary conditions comprise the standard atmospheric variables of surface pressure, horizontal wind components and measures of atmospheric temperature and humidity. Also, as certain configurations of the PRECIS RCM contain a full representation of the sulphur cycle, a set of boundary conditions (including sulphur dioxide, sulphate aerosols and associated chemical species) are also required for this. These lateral boundary conditions are updated every six hours; surface boundary conditions are updated every day.

Application of the PRECIS is essentially a three-stage process comprising:

1) running PRECIS RCM over the area of interest to provide simulations of a recent climate period and comparing these with observations, to validate the model;
2) running the PRECIS RCM to provide climate change projections for the region of interest; the regional model is supplied with GCM fields from the Hadley Centre,
although the system is being developed to use fields from other climate models; and
3) deriving relevant climate information from these projections guided by an
understanding of the needs of the impacts models and an assessment of the climate
models' performance and projections.

An assessment of impact of climate change in 2030s on four key sectors of the Indian
economy, namely Agriculture, Water, Natural Ecosystems & Biodiversity and Health in four
climate sensitive regions of India, namely the Himalayan region, the Western Ghats, the Coastal
Area and the North-East Region has been carried out by the Ministry of Environment and
Forest (MOEF 2010). The work was undertaken by the Indian Network for Climate Change
Assessment (INCCA), a network-based programme that brings together over 120 institutions
and over 220 scientists from across the country to undertake scientific assessments of different
aspects of climate change. The 4x4 Assessment examines the implications of climate change for
India in 2030s deduced from a Regional Climate Model HadRM3 (Hadley Centre Regional
Model Version 3) run for A1B scenario. PRECIS was used as the regional climate model.

4.4 Advantages of RCMs

RCMs simulate current climate more realistically: Where terrain is flat for thousands of
kilometres and away from coasts, the coarse resolution of a GCM may not matter. However,
most land areas have mountains, coastlines etc. on scales of a hundred kilometres or less, and
RCMs can take account of the effects of much smaller scale terrain than GCMs.

RCMs predict climate change with more detail: The finer spatial scale will also be apparent, of
course, in predictions. When warming from increased greenhouse gases changes patterns of
wind flow over a region then the way mountains and other local features interact with this will
also change. This will affect the amount of rainfall and location of windward rainy areas and
downwind rain shadow areas. For many mountains and even mountain ranges, such changes
will not be seen in the global model, but the finer resolution of the RCM will resolve them.

RCMs represent smaller islands: The coarse resolution of a GCM means than many islands are
just not represented and hence their climate is predicted to change in exactly the same way as
surrounding oceans. However, the land surface has a much lower thermal inertia than the
oceans so will warm faster. If it has any significant hills or mountains, these will have a
substantial influence on rainfall patterns. In an RCM, many more islands are resolved, and the
changes predicted can be very different to those over the nearby ocean.

RCMs are much better at simulating and predicting changes to extremes of weather: Changes
in extremes of weather, for example heavy rainfall events, are likely to have more of an impact
than changes in annual or seasonal means. RCMs are much better than GCMs at simulating
extremes.

4.5 Limitations of RCMs

In common with other techniques, regional climate models do not yet provide all the solutions
for generating climate change scenarios. There will be errors in their representation of the
climate system and their resolution will not be sufficient for some applications. Predictions
from an RCM are dependent on the realism of the global model driving it; any errors in the GCM predictions will be carried through to the RCM predictions. This limitation is shared by all techniques for generating realistic climate scenarios.

5.0 Concluding Remarks
Commenting on the use of downscaling in climate change studies, Fowler and Wilby (2007) noted as follows. Although the last decade has witnessed a plethora of publications on downscaling from climate models, very few studies consider impacts per se, and even fewer examine hydrological impacts. Even when studies have an applied element, consideration is seldom given to how results might enable stakeholders and managers to make more informed, robust decisions on adaptation in the face of deep uncertainty about the future. In fact, apart from a handful of often cited examples, downscaling studies are conspicuously absent in the recent reviews on climate change and water adaptation. Paradoxically, the rhetoric has become much more confident about projected changes in temperature and even precipitation at regional scales. Somewhere along the line there has been a disconnection between the suppliers and users of regional climate change scenarios for adaptation and resource planning.

References