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ABSTRACT

Urbanization is defined as the concentration of people in
urban settlements and the process of change in land use occupancy
respulting from the conversion of rural land into urban, suburban
and industrial communities. The world growth of urbanization over
the years is of logarithmic pattern. In more developed countries,
about 75% of the population is concentrated in urban areas and
in developing countries, like India, the rate of urban growth is
very high. The rapid process of urbanization in India is a
challenge for administrators, planners and research workers. This
rapid process of urbanigation is causing heavy demand for water
necessitating increase in the construction of water supply and
drainage facilities. With increase in impervious area due to
urbanization there has been increase in runoff peak and runoff
volume and decrease in time to peak. DPesign of drainage
facilities, which do not account for this increased runcff
volume, are inadequate and thus needs to develop an overland flow
model for urban catchment in order to estimate the exact runoff
and time to peak.

In this study, a two-dimensional overland flow model has
been developed considering random roughness coefficients and
irregular land surface for the analysis of surface flow
compenent . One-dimensional Richards equation for subsurface flow
component has been used for calculating the infiltration from
pervious area. The surface and subsurface flow models are linked
explicitly at the ground surface through the processes of
infiltration. These two models have been validated separately for
surface flow and subsurface flow using earlier results. Present
model is used to simulate a hypothetical urban catchment.
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1. INTRODUCTION

1.1 General

Urbanization is defined as the concentration of people in
urban settlements and the process of change in land use occupancy
regulting from the conversion of rural lands into urban, suburban
and industrial communities (Davis, 1965 and Savani and Kammerer,
1961} . Urbanisation includes the transformation of a rural set-up
to an urban set-up, development of a sub-urban area to an urban
area and rural-urban migration. The urban areas have developed
in response to human social and economic needs. The important
causes of urbanization are : advances in science and technology,
industrialization, advances in agriculture, better scope of
employment , gervice oriented business, better education
facilities, medical facilities and improvement in transportation.
The forces of urbanization are a product of man’s genius, of his
continuous quest for efficiency and of his need for the social
and cultural milieu that an urban area can provide (Lazaro,
1990} .

The world growth of urbanization over the years is of
logarithmic pattern. In 195¢ about one-third of the world
population were lived in cities. In 35 years since 1%50, the
number of people living in cities almost tripled, increasing by
1249 millions (734 to 1983 million). In more developed countries,
about 75 % of the population is concentrated in urban areas. On
a world-wide scale, total population growth during this century
has been accompanied by a continuous increase in the ratio of
urban to rural dwellers (McPherson, 1974). The rate of urban
growth is especially high in develcping countries like India. In
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to
1981. During this period urban population cof India has gone up
from 109 million in 1971 to 156 million in 1981. Number of towns
in India with a population over 2000C increased from 536 in 1951
to 975 in 1971. By 1%9%1 the urban population in India is
estimated to go up to 216 million and by 2001 it is estimated to

go upto about 320 millien. Such trend are reflected in the growth



of metropolitan cities including 5 in India that are expected to
have more than 10 by the year 2001.

The rapid process of urbanization in India is a challenge
for administrators, planners and regearch workers. Ag urban areas
continue to expand new sources of water are required to be found.
This rapid process of urbanisation is causing heavy demand of
water for domestic, industrial and recreational purxpcses with the
consegquent increagse in the construction of water supply and
drainage facilities. The higher demand of water results in higher
urban discharge, because of increase in residential and
commercial facilities such as= building, pavements and parking
lots, the built up or impervious areas in the urban area
increases. There is a increase in runoff peak and runoff volume,
decrease in time to peak, decrease in infiltration and reduce of
base flow. Design of drainage facilities which do not account for
this increased runoff velume are inadequate and may result in
heavy damage and loss of property. Therefore, there is a need for
the correct estimation of storm runcff and design of suitable
drainage system. This motivates the researcher to develop a model
for overland flow on urban catchment to estimate the exact
runoff, ‘time to peak and to check the adequacy of the existing
drainage facilities.

In thig report, two-dimensional overland flow model has been
developed considering random roughness coefficients and irregular
land surface for analysing surface flow. Infiltration has been
calculated using the one-dimensional Richards equation for

subsurface flow.

i.2 Literature Review

An extensive literature review on urban hydrological
modelling and catchment research has been carried out for
different developed and develcoping countries in the report SR-
15. The study showed that almost in all the countries the
authentic data on long term basis are not available, specially
the discharge data through urban drains.



Storm water management model (SWMM) is a package of models
linked together and divided inte a number of blocks. It is a
comprehensive model covering both quantity and quality aspects.
It was developed by the US Environmental Protection Agency in the
early 1970 and is being continuously updated. It has been
extensively used in the USA to design sewer upgrading works
particularly where these are required to control pollution. It
can mocdels all the major hydrological processes but ag a results
becomes very unwieldy to apply in Indian hydrological condition.

UNESCO, 1978 reported that design of urban drainage system
in India is based on rational formula because of lack of adequate
continuous records of precipitation and stream flow.

Ramaseshan, UNESCC 1983, has alse reported that the urban
hydrclogic problems of India differ from those of developed
countries in several important points such as lateral rather than
vertical development, limited amounts of paved area, initial
interaction between urban drainage and flood control, preference
for open drains over closed ones, limited availability of
continuous records of precipitation, stream flow and water
quality, limited number of sewer connections and hence shifting
of combined sewer, high cost of construction and modification and
limited capacity of financial investment.

Chakraborti A. K, {1985} in his study of urban storm water
runoff modelling in Rohini Delhi has reported that the urban
drainage index adopted in his study in India ig 3.5 cumec/sqg. km
with 35 mm/hr rainfall intensity with once in two years
recurrence interval. Since the rate of urbanisation in Rohini is
expected to increase from 55 % to 84 % , the urban drainage index
needs to be modified accerding to 5.5 cumec/sqg km.

In the present study, a overland flow model for urban
catchment considering the randoem roughness and irregular
boundaries has been presented. This model is based on the
solution of the two-dimensional shallow water flow equations for
the surface flow by a finite-volume technique. A finite-volume
technigue has the advantage of being applicable to irregular
fields without the necessity of approximationsg at the boundaries
as required by a finite-difference scheme. One-dimensicnal



Richards equation has been used for calculating the actual
infiltration considering actual physical conditions through the
pervious surface. The solution of Richards eguation has been
obtained using the implicit finite difference technique. Boundary
conditions of any type i.e. line, corner or fan shaped can be
eagily implemented in the finite-volume method. A source term is
included in the continuity eguation for simulating the
infiltration. The proposed model has been validated separately
for surface flow and subsurface flow. Surface flow component has
been validated using the data of Zhang and Cundy (1989) for two-
dimensional surface flow considering effective rainfall. The
subsurface flow component has been validated using the data of
Hong et al. (15%%4). The present model has also been used to
simulate the hypothetical urban catchment as shown in Fig.1l. The
runoff hydrograph before and after urbanization has been

compared.
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Fig. 1: Definition Sketch for the urban catchment with

impervious ‘area.



2. GOVERNING EQUATIONS

Mathematical modelling of overland flow for urban catchment
involves sclution of the governing equations for both the surface
flow and subsurface flow with infiltration at the ground surface
acts as the connecting link. In this study, the surface flow is
represented by the two-dimensicnal shallow water flow equations
with infiltration as a scurce term in the continuity equation
while the subsurface flow is represented by the one-dimensional
Richards equaticn in z-direction.

2.1 Surface Flow Egquations

The surface flow is assumed to occur in a non-prismatic
c¢hannel. The two-dimensional depth averaged shallow water flow
equations which describe the laws of conservation of mass and
momentum can be written as (Chaudhry 1993):

du_3E . 06
ot =y S

in which, U, B, G and 5 are vectors and are defined as

uh
h 1 .,

U={uh } E = u’h+—gh?}, (2)

vh 2

uvh

avh (®-1)
o 1 2 and S = gh(Sox_sfx) (3)
vh+5gh gh(8,,-S;,)

where, h - flow depth; u = depth averaged velocity component
along x dir.; v = depth averaged velocity component along y dir.;
R = volumetric rate of rainfall per unit area; I = volumetric
rate of infiltration per unit area; g = acceleration due to
gravity; S, = catchment slope in x direction; §_ = catchment

oy
slope in y direction; S, = friction slope in x direction; Se, =

friction slope in y direction. The derivation of the above

[ )



equations has been reported in Chaudhry, 1993 and is not repeated
here. The assumptions in deriving the two-dimensional depth

average shallow water flow egquations are as follows:

1. The pressure distribution is hydrostatic. This is a valid

asgumption if the atreamlines do not have sharp curvatures.

3. The channel bottom slope is emall, so that the flow depths
measured normal to the channel bottom and measured
vertically are approximately the same.

3. The flow velocity along the depth is uniform.

4. The head losses in unsteady flow may be gimulated by using
the steady-state resistance laws, such as the Manning
equation or Darcy-Weisbach equation.

Friction Slope

The friction slope is computed using the Darcy-Weisbach
equation. Zhang and Cundy{1985) have differentiated between the
resistance offered by the bed and the resistance due to the
rainfall impact. They have used either the Manning eguation or
the Darcy-Weisbach equation to compute the resistance offered by
the bed. They have developed a simple expression for the
registance due to the rainfall by assuming that the retardance
effect of rainfall is predominantly caused by the momentum
exchange between individual rain droplets and flowing water. The
Darcy-Weisbach equation for computing the friction slope is given

by
i

_ fdv\/uiw§ (4)

Sty = 8gh

_ fduv’uiﬂr5

Sfx - Sg.h

where, £, = frictional resistance coefficient. Evaluation of £,
depends on the instantanecus gtate of flow and is given by the

following formulae.



(i) Laminar flow (Re < 900):

C
£, = —L (5a)
9 Re
(ii} Transitional flow (900 < Re < 2000) :
_ 0.223
y = Re 925 (sb)
(iii) Pully turbulent flow (Re > 2000) : '
-2
£, = 2log2—}:1+1.74) (5¢)
in which,
CL = 24 + 0.21743 R**07 (54)

In the above eguations, Re = Reynolds number = g/¢y (v =
Kinematic viscosity of liquid), R = inteneity of rainfall and
k = a length measure of surface roughness.

2.2 Subsurface Flow Equations

The subsurface flow is considered as one-dimensional motion
of a single-phase incompressible fluid. The cne-dimensional,
transient unsaturated flow equation in an isotropic porous medium
is derived by applying the principle of conservation of mass and
the basic Darcy’'s law for unsaturated flow and making the
following assumptions.

bility of the medium and the water are negligible;

{i) Compressib

{ii) The air phase is stagnant and is at atmeapheric pressure;

The one-dimensional continuity eguation without source and
gink within the flow domain can be written as

@1-»?&:0 (6)
ot oz



where, 8 = volumetric moisture content; V, = Darcy flow velocity
in the z direction; and z are distance along the coordinate
direction. z is taken positive down wards. It is agsumed that the
Darcy’s law is applicable for evaluating the velocity components.
The Darcy's law for unsaturated flow in the z direction in an

isotropic soil is
vV = -K fﬁg-l (N
. = k{51
where, Y =pressure head (m) and K(y)= unsaturated hydraulic

conductivity (m/e) which depends on ‘the pressure head, .
jation (7) in Equation (6) yields the Richards

equation (Freeze and Cherry 1979) :
9% . 8 o (8)
ot oz {K(w)( dz 1)]

Equation is valid for transient subsurface flow in the
unsaturated zone where the compressibility effects of the fluid
and the medium are negligible. Egquation is said to be in the
"mixed form" of Richards Eguation aince it includes both the
dependent variables # and y. Most of the earlier studies cn the
sverland flow have employed the Richards equation in either the
pressure head form or the moisture content form. These eguations
are

Pressure Head form

e - %K(wl(g—“g-l)] (9)

Moisture content form :

86 _ 0 [K(w) 98_ (10)
ot az[c(lll) 0z Kw)]

in which, C{y) = d6/dy = specific moisture capacity and K(§) /C{¥)
- unsaturated diffusivity. Pressure head form of the Richards
equation is applicable to the flows in saturated-unsaturated



zones and layered zones, but gives large mass balance errorg. The
moisture content form of the Richards equation perfectly
conserves the mass within the flow domain, but is not applicable
to the saturated flow zones and ig also not applicable directly
to the layered zones because of the discontinuities in moisture
content profiles at the interfaces of layers. These difficulties
are over come by using the mixed form of the Richards equation.
It has been shown conclusively by Hills et al. (198%) and Celia
et al. (1990) that the mixed form of the Richards equation
result in better numerical behaviour than the other forms. It
combines the benefits of both the pressure head and the moisture
content forms of the Richards equaticng. Therefore, in the
present study, Equationg (€} and (7} are numerically solved to

The main difficulty in the Richards equation to actual field
situations is the estimation of the parameters of the soil
characteristic curves. Functional relationships are needed to the
relationship between the hydraulic conductivity, the moisture
content and the pressure head. In genéral, Yy-K and -6
relationships are not unigue and soils exhibit different
behaviour during wetting and drying phases. This hysteresis is
not considered here. However, the hysteresis can be included by
employing different y-K and y-8 relations for wetting and drying
processes. Several quasi-analytical eguations are available to
describe ¥-K and ¥-¢ relationa (Rawls and Brakensick, 1988). some
very commonly used equations are given below.

Brocoks-Corey (1964)

. oz
-8, (%\*  and K(8) { 0-6: Y, (11)
8,8, \ v/ K, 16,-6,)
Campbell (1974
1 +3
8 _(Hs|% K(6) [ 8™ (12)
8, (w) and K, |8, :

(el
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whe;e, K{f}and § are the hydraulic conductivity and the moisture
content of the soil. K, and 8; are the saturated hydraulic
conductivity and saturated moisture content. 6, is the residual
moisture content and ¢, is the hypothetical bubbling pressure,
A, Ay, A, and A, are constants.

The parameters of the soil moisture characteristic

e T A lmm e ] Ed ml m =
1UMLLU DS SpoCllitul a b
of the Richards equation models., These values may be obtained
from field observations using parameter estimation models. In
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this study, goil moisture characteristics derived from
experimental and field data are employed.

3. NUMERICAL METHCD

The governing eguations presented in the previous section
are a set of non-linear partial differential egquations for which
analytical solutions are not available in idealized cases.
Therefore, they are sclved in the present study using numerical
gchemes.

3.1 Surface Flow

Ssurface flow equaticns constitute a set of nonlinear
hyperbolic partial differential equations. These can be sclved
using the numerical methods. Many types of numerical metheds such
as finite-difference, finite-element and finite-volume methods
are available for the sgolution of the hyperbolic partial
differential equations. Finite-difference methods require
approximations of the boundary if the domain is non-rectangular.

They should have a grid with sguare corners, straight edges and

10



parallel lines. They can not easily simulate the natural
boundaries but, they are very simple and easy to implement. On
other hand, finite-element methods have an advantage over
finite-difference methods in handling the irregular boundaries.
However, they are computationally more intensive and are mere
difficult to implement than finite-difference achemes.
Finite-volume methods are a viable alternative to the
finite-element methods and are becoming popular these days.
Finite-volume methods can easily handle non-rectangular domains
and are as easy to implement as finite-difference methods.
Therefore, in the present study, a finite-volume method is used
for solving the governing equations. A recently developed high
resclution finite-difference scheme (Nujic 1995) for the solution
of dam break flows is converted into a finite-volume method by
S8ingh, 19%6. The wmain advantages of this scheme are its
gimplicity and ease of implementation. It can alsoc handle sharp
gradients in the water surface profile if they are present. The
finite-volume scheme is an explicit scheme and is second order
accurate in space and time. It is a two-step predictor-corrector
scheme. A brief description of the scheme as applied in this
study is presented below.

3.1.1 Finite-Volume Scheme

Figure 2 shows the finite-volume grid of the two-dimensional
flow domain. The flow domain is divided into a set of cells
(i,3), each of which is identified by the corresponding centre
point. The finite-volume grid need not be orthogonal as in the
cage of a finite-difference grid. Figqure 3 sghows the
necn-orthogonal elemental cell (i,j) and its immediate neighbours.

The governing equations are integrated by a finite-volume
technique on each of these cells covering the whole domain.
Equation (1) can be written in an integral form as shown below
after applying the Gauss divergence theorem.

—dv+£(r.n)ds=_f3dv_ (14)

11
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Fig. 2: Finite-volume grid for two-dimensional domain.

Fig. 3: Two-dimensional cells for any arbitrary shape of flow
domain (Non-orthogonal cell).
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where, F is the flux term at the control surface. The volume
integral in the first term actually represents the integral of
the time evolution of the function over the area of the cell. The
surface integral in the second term is the total normal flux
through the cell boundaries. The normal unit vectors to the cell
wallg are defined as shown in Fig. 4.

4

Fig. 4: Normal vectors at the cell faces in a cell of
two-dimensional finite-volume grid.
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the second term of Eg. {14} can be

expressed in terms of the Cartesian components as
F.n = Bn, + Gn, {15)

where, n, and n, are the x and y components of the unit vector n.
Assuming the vector U to be uniform over the cell, Eq. (14) can

13



be written as

au .
Em+f’(1“.n)ds = SAA (16)

where, AA = area of the finite-volume cell. The surface integral
in Eqg. (16) is approximated by a sum over the four walls of the
finite-volume in the following way.

4
§ (F.n)ds~Y (F..n.)ds, (17}
=) r=1

where, ds, = lengths of the four walls which contour the cell
(i,j); F, = the numerical flux through the cell faces r which
contour the cell (i,j).

Evaluation of the numerical flux at a cell face is explained
here for the cell face between the nodes (i+1,3) and {i,3]).
Similar procedure is adopted for other cell faces.

1
Fy.ny= (F.n)1+_;_'J.=E{FR+FL—a(UR—UL)].nh%J (18)

where, o = a positive. coefficient, F,-Ff(U,) = the flux computed
uging the information from the right side of the cell face and F =£(U,)

= the flux computed using the information from the left side of
the cell face. U, and U, are obtained using the following
procedure.

(UL)i‘_l j=Ui,j+—6U.i,j (19)
3

-v,., . -Leu,, . (20)
4 2

where, the subscript {i,j) refers to the value at the node (i,]).
The subascript (i+l1/2,j} refers to the value at the interface
between the nodes (i,j) and (i+1,j). There are several ways to
determine &U,; 5, and &Ug .y, using different slope limiter
procedures (Alcrude et al. 1992). The "minmod" limiter is

14



followed in this study. According to this

8U, ;= minmod (U, - U, 40 U; ;=T J) (21)

8U;, ;= minmod (U, ;- Uy 50 Upg ;- Upy ;) (22)

where the minmod function is defined as

a if lal < bl and ab >
minmod = {b if bl < lal and ab >
0 if abs=s0

[=N o)

(23)

The positive coefficient a is determined using the maximum
value (for all the grid points) of the largest eigen value of the
Jaccbian of the Eg.(1). This is approximately given as

a = max|(Vi’j+,/g'h_i’_j)| i=1to N,, j;lto N, (24)

in which, N, and N, are the total number of grid points in the x
and y directionas, respectively, and Vi,y i the resultant
velocity. Integration of Eg.(16) in the time domain is done using
a predictor-corrector approach as discussed below.

Predictor Part:
The predicted value of the vector U at the unknown time

level t+At is determined using the following discretization of
Eq. {16).

. At
Uij = Uis-
3 Mi,j . . e
n
Fr1,;98.1,57F (1 49,53 %Fi 15 481,57 51 dsi,J-—l_
+ At 874

in which, the superscripts n and * refer to the value at the
known time level, t and the predicted value at the unknown time
level, t+At, respectively. At is the computational time step.

15



Equation (25) should be interpreted component wise for the vector
U. Equation (25) gives the predicted values of h, u and v at the
time level, t+At at any node {i,3).

Corrector Part:

The vector U at the corrector step ** and at the node {i,])

i.e. U, is computed using the predicted values and the values
at the time level n.

v At
Ug; = U-?aj_ Mi )
3
. . . , (26)
Fi*%,J dsio—;.J*Fi,j.% ds, ;. 1+Fiv-%, dsi*%-.f-'.Fi,j-—; dsirj--}
+ At SIJ

Following the recommendations of Alcrudo et al. (13%2), U
and U, (which are needed to compute F' are determined from Ui
and U, using the same 8U,,,,; and 08U, which are already
determined in the predictor step. This procedure results in
better numerical stability.

. .1

(UD) . 1,57 Ui+ 5605 e
u; “ Uy - 28U (28)

{ R)p_;,j“ i1, )T 5 OYin, g

Computation of F' and 8' in Eq. (26) is similar to computation
of F and S in Eg. (25) except that the predicted values of U are
used instead of the values of U at the time level t.

The vector U at the unknown time level n+l and at the node
(i,3) i.e. U’“li,j ig computed taking the average of the predicted
values and the corrected values.

n+l

vl = S (vie i) (29)

16



3.1.2 Initial Conditions

Initial conditions are required at time t=0 to start the
transient computationsg. At time t=0, the flow depth, the velocity
components and the infiltration depth for all the cells are
specified as the initial conditions. Although the initial flow
depth is equal to =zero, a very thin water film of depth h,, is
assumed to exist at time t=0. This assumption is made to cvercome
the numerical singularity in a simple way. It has been shown
earlier (Singh and Bhallamudi, 1996} that such a procedure does
not introduce significant errors. The velocity components and the
infiltration depth are zero at all the cells at time t=0.

3.1.3 Boundary Conditions

The finite-volume grid is chosen such that the boundaries
of the flow domain coincide with the cell faces of the
control-volume cells. Boundary conditions are gpecified at all
the outer cell faces of the flow domain. Two types of boundaries
(i) flow boundary and (ii) no flow boundary are encountered in
the overland flow model.

{i} No flow boundary: A schematic representation of a no flow
boundary i.e. a solid wall boundary for the cell (i,j) is shown
in Fig. 5a. Zerc mags flux condition is specified ag the boundary
condition at the left face of the cell (i,j) while solving the
continuity equation. This means

(uhn, + thﬂ1: 0 (30)

Value of the flow depth at the face 1 is required for
computating F at this face while solving the momentum equation.

In the present study, it is assumed that the flow depth at
the face 1 is approximately equal to the flow depth at the centre
of the cell. This means

1 2
{F'n)l{xfmamentum) - "Eghi.jﬂxl (31a)

17



and

(F'n)l(y-mamontum} - %ghiz-jny] (31b)
Y ;
Solid wall {i,j 2
boundary 2
: . 1
(G, (1, pn
3 ! ! Pue— (i} sc
j (i’ ;.-.1) /7% TTIXITIT2ITTTITI2T
Y a” ace) |
(a) q (b}
Ve
7]
:
7
——p .

AAASAM LAY

()
Fig. 5: Implementation of boundary conditioms
(a) Solid wall (b) Corner Inflow and {(¢) Line Inflow.
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(ii} Flow boundary: Flow boundaries are encountered for all those
outer cells which receive the irrigation water from a source
external to the domain. Two types of inflow boundary conditiens
are implemented in the proposed model. A description of each type
follows.

Corner £ : Corner inflow corresponds to flooding of the
domain from a point source located at a corner. As shown in Fig.
5(b}, the total discharge asgigned to the inflow, Q (m/s) is
assumed to enter the cell from the faces 1 and 2 in equal
amounts. Therefore, the unit discharges p and g (m/s) are
computed as

[*,
Ay

—
[}
B

—

b= ’ ‘7=i
2 24x
The values of flcow depth at the faces 1 and 2 are required
to compute the flux at these faces while solving the momentum
equations. Information from the centre of the cell can be used
for thig purpeose only if the inflow is subcritical. Therefore,
the flow depth at the face is computed as

hface = MdX(hc, hcr.itica.[) (33)

where, h.=flow depth at the center of the cell and h_. ., =flow
depth computed from the critical flow considerations.

1
2+g?)3 34
hcritical = 1'01(&%]3 ( )

1

PP Tt ~ e - o mpa Lpp_—1 = [ . 1
It should be noted here that thé c¢ritical depth is increased

by 1% to ensure the subcritical flow conditions.

Line Inflow: Line inflow repreaents the flooding of domain from
one face of cne or more cells. Fig. 5(c) shows the line inflow
from more tHan one cell. The total inflow, Q (m*/s) is assumed to
enter the cells from only one face. Therefore, the unit digcharge
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p (m?/s) for each of the cells = Q in which n, is the number

n;ay

of inflow cells. Procedure for calculating the flow depth at the
cell face is similar to the procedure described for the corner

inflow.
3.1.4 Numerical Stability

Thig finite-volume scheme is an explicit scheme and
therefore, computaticnal time step, At is dynamically computed

Garcia-Navarro 1993}.

min{dr{i,j)}

2 MaX{(\/'g—H*ffu"Tv_’)i,j}

At = (35)

in which, dr{i,j) are the whole set of distances between every
centre point (i,j) and those of itz four adjacent cells.

3.2 Subsurface Flow

In order to determine the infiltration rate I in the
continuity equation for the surface flow, the subsurface fiow
. equations have to be solved along with an appropriate boundary
condition at the ground surface. In the present study, a recently
developed strongly implicit finite-difference scheme {Hong et al.
1994) for the mixed based formulation of the Richards equation
is used to simulate the unsaturated subgurface flow conditions.
This scheme ensures mass balance in its solution regardless of
time step size and nodal spacings, and nas no limitations when
applied to field problems. It is also easy to incorporate
different types of boundary conditions in this =cheme. The
subsurface flow is assumed to oCCur only in the vertical
direction. In thig study, the infiltration rate at any distance
x is determined using the one-dimensional Richards equation with
the surface flow depth at that point as the top boundary
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condition. Numerical solution of the Richards eqguation is
described in the feollowing section.

3.2.1 Implicit Finite-Difference Scheme

The subsurface flow domain is divided into a number of
rectangular blocks (Fig. 6a).

-]

4'b (Specified)
//

e X » ~
-] [+) (] [+] ° j—?
. U ) e -1 Az . 2
11
[}
. o1l e ime i .
Iv
. . - - j+‘|
' - .
Z i-1 i 1+1

Fig. éa: Finite-Difference Grid for Subsurface Flow.
6b: Definition Sketch of Pressure Head type Boundary for

The moisture content, § and the pressure head, ¥ are
specified at the centre of the block (the node), while the
velocities are specified at the interblock faces. The subscript
j refers to the block number in the z-direction. The superscripts
n and n+l refer to the known and the unknown time 1levels,
respectively. The finite-difference form of the Eg. (6} is
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na+l ] IF !
65" -6y . Vv = Voo = 0 (38)

At AZ

where, the bar is used to denote the time averaged value of the
velocity. Az is the nodal apacing in the z direction. The
time-averaced velocities are determined by

V=wvrl+ (1l-w)vn (7

in which, w=time weighting factor.
The velocity at any interblock face is determined using the
pregsure heads at the neighbouring cell centers. For example ;

Kl (Vg1 — Wy) -AZ)
Az

(38}

Ve = -

in which, Ky is the unsaturated hydraulic conductivity evaluated
at the interblock faces between the nodes (3+1) and (j).
Substitution of Egs. (37}, and (38) in Eg. (36) yields

Resy” = BRLLKRML - uf - Az) + KE'WST - 45 - ag

n+1

+9j

i (39}
- {6}’—(1—W) %(ny—vﬁ)] =0

The unsaturated hydraulic conductivity at an interblock face
is estimated ueing the pressure heade at the neighbouring cell
centers. Haverkamp and Vauclin (1979) state that the geometric
mean is the best choice for estimating the interblock
conductivities. However, Hong et al. {1994} reported that the
iterative solution of Eqg. {(39) fails to converge if the above
procedure s adopted for estimating the K. This is especially true
for infiltration into initially very dry eoils. The geometric
mean is strongly weighted towards the lower value and therefore,
water can not drain eagily if the soil is initially dry. This
results in a non-physical build up of pressure. In thig study,
the interblock hydraulic conductivity is estimated by the
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weighted arithmetic mean. For example,

Krp = YE(U;) + (1) K(V,.;) (40)

in which, v is the weight coefficient. Hong et al. (1994) suggest
a value of ¢.5 for v.

Equation {39) is written for all the blocks in the flow
domain and this results in a set of simultanecus algebraic
equations in the unknowns ¥{j)™!. These simultaneous equations
are highly non-linear since #8™! and K™! are non-linear functions
of ¥™*. In the present study, they are solved by using the
Newton-Raphson technique.

a+l,r
Reg]yd'r + ggesj—5$m =0 {41)
oy,
in which, r is the previous iteration level and
Sy = (y»i-el - yalry . Bubscript m indicates the summation of the

second term over all the blocks. Substituting of Eq. {39) in Eq.
(41) vields a linear equaticn in 8¢ having the following form.

n+l,r n+l,r n+l,r n+l, o {42
Tj all_lj_l + Bj éwjd + Pj ! 61|J'j + RESj =0 )
in which, T, B, and P are the elements of the Jacobian of the

system of equations, Eqg. (39). Bguations for evaluating these
coefficients are as follows

n+l,r wAt n+l,r Djn‘l'r a+t,r n+l,r 1 (43)
Ty = ~|~Krz™"" + —5— (U.Jj - Ui - AZ)
Az 4| < J
+1,
n+l,r _ WAL n+l,r jn i n+i,r n+l,r (44)
By T Ag? Ky T - 5 (wj+1 - Uy - Az)
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D{Hl,r

n«l,r _ ~n+l,r wAt +1, +1, +1,
BINT = O s B AT - ST - 5T - )
{45)
) D:jvl,r
n+l,r +1, +1,
« Kpp '+ — (Uﬂ - - az)
n+l,r _ n+l, r n
RESJ' = Gj - Bj
(46)

+

wAE +1, +1, 1-
(V;VI r 1:_111 r) , (1-w)At

Az i Az (V; v Vo )

Equation {42) when written for all the blocks in the domain

constitutes a matrix equation

An+1,r5w = _Resﬂ*-l,r (47}

ir which, the coefficient matrix A is tridiagonal. Equaticn (47)
is solved in the present study using the standard subroutine for
the golution of tridiagonal matrix.

For convergence in iteration of Eg. (41), it is required
that
A+l r (48)
RESJ <E

in which, € = water content convergence tolerance. Equation (48)
practically represents the principle of mass conservation because
usually a very small value of ¢ in imposed.

3.2.2 Boundary Conditions
(i) Flux-Type Boundary Conditions: In the adopted acheme, the
grid is arrenged in such a manner that the boundaries of the flow

domain c¢oincide with an interblock. Therefore, flux or
velocity-type boundary condition can be incorporated in a natural
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way in Bg. (386).

(ii} Pressure Head-Type Boundary condition: Refexring to Fig.
6 (b), let ¥, be the imposed pressure head at the ground gurface
¢f the flow domain. This pressure head ¥, is used along with the
values of ¥, and ¥, to determine the flux at the ground surface

as given below.

- awb
3

A
3

+3w1—
Az

(49)
-1

Vil o = K(Wp)

Second-crder forward finite-difference analog is used to
determine the above Eq. (49). Eguation 39 and eguations for the
coefficients T, B & P are appropriately changed to include the
boundary conditions before the matrix A™YT in Bg. (47) is formed.

3.3 Burface and Subsurface ¥low Interacticn

Surface and subsurface flow components are interrelated by
a commen preasure head and the infiltration at the ground
gurface. The top boundary condition for the subsurface flow is
determined by the surface flow depth. In turn, the infiltration
term in the surface flow equation is controlled by the gubsurface
flow conditions. The following procedure is adopted for
simulating the interaction between the surface and the subsurface
flow components.

1, Subsurface flow =solution at time level n is used to
determine the infiltration rate at the ground surface.

2. Surface flow equations are now solved using the
infiltration rate from step 1 to determine g and h at the

unknown time level n+l.

3. The surface flow depth at the time level n+i is used as the
top boundary condition and the subsurface flow equations
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are solved. This gives the & and ¥ distribution in the
aubsurface at time level n+l.

4. Steps 1-3 are repeated up to the reguired time level.

As mentioned earlier, above is a decoupled approach which
reduces the CPU time by half without significantly affecting the
accuracy of the results.

Boundary Conditions:

For subsurface flow resulting from rainfall infiltration,
the top boundary condition changes with time. During the initial
astages of the rainfall, there is no ponding and the infiltration
rate is equal to the rainfall rate. The top boundary condition
for such a aituation is the specification of the flux equal to
the rainfall rate. As time progresses, the upper layers of the
gubsoil get saturated and then infiltration rate starts
decreasing. Before atarting the sclution of the Richards equation
for any time step, the flux at the top boundary is estimated by
taking w; = 0. If this velocity is greater than the rainfall
rate, then the flux type of boundary condition is applied.
Otherwise, a head type of boundary condition (¥, {x} = hix) =
water flow depth at that point) is applied. The time to ponding
comes out as a part of the solution.

A no flux boundary condition is imposed at the right and
left boundaries. The y values at the bottom boundary are obtained
using a simple extrapolation from the interior pointg. This
approximation dces not introduce errors because the bottom
boundary is taken fairly deep and the moisture front does not

reach their for the computational times considered.
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4. RESULTS AND DISCUSSION
4.1 Validation of the Model

In order to verify the present model, first the surface and
subsurface flow components are tested geparately with available
experimental data and analytical solutions. }hen, both the
components have been linked together. A hypothetical urban
catchment has been simulated using the pregent model.

4.1.1 Burface Flow

First of all the two-dimengional gurface flow model was
tested with the results of Zhang and Cundy (1989) for overland
flow on a rectangular domain with spatial variation of surface
roughness. Zhang and Cundy (1985) conducted the simulation with
a rainfall of 1% cm/hr and infiltration rate of 5 cm/hr.
Infiltration was continued after the end of rainfall at 3.5
minutes. The rectangular domain was 12 m long and 12 m wide with
a 5 % gradient tilting in the x-direction. A differentiation wasg
made between the resistance to the flow due to the bottom
roughness and due to the rainfall impact. Effective friction
slopes in x and y directions were computed using the following
equations (Zhang and Cundy 1989):

Ru f'du\,fuiﬂri R

Spe = RU TMWUBVT 0 5, - Ry, fafuli? (50)
£ gh Bgh ¥ gh 8gh

where, f, = frictional resistance coefficient and is given by:

fy= —2 ‘ {(51)

The resistance parameter, ¢, was used to represent the
surface roughness and assumed to vary according to a lognormal
probability density function. Zhang and Cundy {(1989) generated
the #, values randomly frem a lognormal function with a mean of
512 and standard deviation of 154. The values of k, apsigned to
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each of the finite-volume grids on the plane are given in Table-1
(Reproduced from Zhang and Cundy, 1989). The above test case was
simulated using the present model with a grid size of Ax = Ay =
1.0 m. Initial flow depth on the plane, h,,, was equal to 1,0x10™*
m and Courant number, C, was equal to 0.8.

Tabls 1: Spatial Distribution of Surface Roughness

jfi 1 2 3 4 5 € 7 | 8 2 10 11
i 295 [ 288 | 312 | 650 | 698 | 287 ) 486 | 710 | 460 | 744 | 538
2 472 | 591 | 603 | 450 | 276 | 529 | 585 { 405 | 418 | 543 | 332
3 631 | 404 | 728 | 494 | 616 | 510 | 648 | 752 | 412 | 744 | 264
4 521 | 385 | 458 | 426 | 599 | 345 | 677 | 775 | 262 | 555 | 647
5 557 | 723 | 372 | 650 | 634 | 593 | 271 | 466 | 396 | 286 | 358
€ | 701 | 256 | 692 | 761 | 458 | 373 | 248 | 531 | 468 | 361 | 458
7 710 | 272 | 721 | 402 | 688 | 549 | 561 | 502 | 759 | 570 | 755
8 533 | 313 | 678 | 275 | 457 | 388 | 521 | 284 | 264 | 826 | 497
9 451 { 414 | 691 [ 612 | 732 | 498 | 663 | 298 | 526 | 570 | 366
10 491 | 653 | 627 | 584 | 727 | 481 | 266 | 748 | €99 | 440 | 228
11 405 | 635 | 650 | 578 | 357 | 450 ]| 340 | 663 | 447 | 252 | 545

The cutflow hydrograph for a uniform x, value equal to 512
obtained using the present model is compared with the numerical
results of Zhang and Cundy (1989} in Fig. 7. It can be clearly
seen that the present model essentially gives the same regults
as simulated by Zhang and Cundy (1989). The difference in the
regults towards the end of the simulation could be due to
different downstream boundary conditions adopted in the
simulations. Extrapolation procedure was adopted in the present
study while a critical flow condition was implemented by Zhang
and Cundy {1589). It should bhe hoted here that the simulations
by Zhang and Cundy (19289} used a C, value of 0.08 which means the
present model is 10 times computationally faster than their
model.

Figure 8 showe the comparison of numerical results for the
outflow hydrograph, obtained using the wvariable roughness
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surface. Although the hydrograph peaks simulated using the
pregent model and by Zhang and Cundy (1989) match satisfactorily,
the present mcdel dces not show any oscillations.
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Fig. 7: Comparison of outflow hydrograph from surface flow
model with uniform surface roughness.
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Fig. 8: Comparison of outflow hydrograph frem surface flow

mode]l with wariable surface roughness,
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4.1.2 Subsurface Flow

In order te wverify the subsurface flow component of the
present model, a problem of one-dimensional infiltration into a
uniform sand column, for which a analytical sclution by Philip
and Haverkamp is available. In this problem, the computational

parameters are taken as given below in Table-2.

Table 2: Computaticnal parameters for Subsurface flow

K:KSL' g = 9r+m
A+ ™ B+{yl*
K, = 34cm/hr, A= 1.175x%10%, m=4.74,
8,-0.287, 6,-0.075, B=1.611x10%, n=3.96,

8(z,t=0)=0.1, Y(Ocm,t>0)=-20.73cm,

Az=1lcm, €=1x103, and w=1

The lower boundary condition has been considered as free
drainage and upper boundary condition has been considered as the
specified pressure head boundary.

The calculated moisture content profiles at times t = 0.1,
0.2 and 0.8 hours are presented in Fig. 9 along with the
analytical wvalues of Haverkamp and Vauclin (1979). The figure
shows the good agreement with the earlier numerical results. The
infiltration rate and cumulative infiltraticen per unit area
obtained by present model and Haverkamp and Vauclin (1979) are
presented in Figs. 10 and 1i. Again figure shows the good

agreement between these two resulta.

30



Fig.

Fig.

9:

10:

Moisture Content

0.1

0.2

0.3

20

!

Depth (cm)

o
[=]

80

100

Comparison of moisture content profile for

flow model.

40.0

35.0

o o
o o
o =)

0
e
<

Infiltration rate {em/hr)
o
©

Present model

subsurface

»+7 ¢+ Haverkamp et. al. (1977)

=\"‘““*'—r»—-.— * . .
10.0
540 T T T I T I T I T T T I T T T T T T P T r iy T[T r v T
) 0.2 0.4 0.6 0.8 1.0
Time (hr)

Comparison of Infiltration rate with earlier results.

31



18.0

Present model
«++«» Haverkamp et. al. (1977)

12.0

iy
=]

Lot s lao v o by v v v ey sy g

Cumulative infiltration (cm)
s}
(]

a.a LLALNLL LI L I 0

8.0 02 0.4 06 08 1.0
Time (hr)
Fig. 11: Comparigen of Cumulative Infiltration with earlier

results.

4.2 Simulation of Hypothetical Urban Catchment

Numerical simulation wag carried out using present model to
demonstrate the applicability. For this purpose, a hypothetical
urban catchment (Fig. 1) has been conaidered having length = 16
m., width = 16 m., longitudinal glope of 0.05 in x-direction
only. The viscosity of the fluid, v = 1.94 X 10* m?/s. The
rainfall intensity was considered 250 mm/hr over a duration of
10 minutes. The model has been run for a duration of 12 minutes.
The hydraulic properties of the aoil were taken from Singh
{1996) . The relative hydraulic conductivity, K. and the effective

gaturation, S, are defined as
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K (6-86,)
= R = {52)
K. = — and 8, = 16,55

in which, K, and 8, are the saturated hydraulic conductivity and
gsaturated moisture content, #, is the residual moisture content.
The curve for S, ve pressure head and K, vs pressure head are
represented in the present study using the following equations.

A
(EJ if v=-12.85cm
" I (53}
® 0.8434-0,.0148¢y-0.0026¢y* if -12.85=y=<-2.8¢cm
0.8642 ify>-2.8¢cm
7
(&J if ¥s-13.729¢cm
K, = v {54)
0.5228+0.0204¢~0.0009y® If -13,729=<y=-1.0cm
0.5015 If y>-1.0cm

The values of K,, 8,, 6,, A, # and ¢, (hypothetical bubbling
pressure petential) for the soil are given in Tabie 3.

Table 3: Hydraulic Properties of the Soil

K, 8, g, A 7 ¥y

{cm/day} {cm)
566.9 '] 0.46 0.02 2.03 8.09 -10.0

The finite-volume grid spacing in the x and y directions,
4x and Ay were equal to 1.0 m and 1.0 m respectively and grid
spacing in z direction was 2.74 om, and Courant number, C, =
0.65. A very small wvalue of initial flow depth of 0.2 mm was
taken to overcome the singularities problem. The numerical
parameters for subsurface flow computations were: w = 1.0, and

€ =103,
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In this model, the infiltration rate has been calculated at
a point in the flow domain and used for all grid of the catchment
having uniform scil type, assuming uniform infiltration rate all
over the catchment. Since the whole catchment surface is ponded
at the same time and the wetting front moves essentially in the
vertical direction, the assumption of uniform infiltration rate
all over the catchment is valid if the soil parameters are same
and surface flow depth doeg not have a significant effect on the
infiltration rate (Singh, 1996) . The above assumption
significantly reduce the computational time and computes the
exact value of the infiltration rate based on s8ecil physical

parameters.
Figure 12 shcows the runoff hydrograph at the downstream end
(x=14 m) for three different percentage of catchment

imperviousness (i.e. 0 % impervious means without any impervicus
area, 50 % means 50 % of the catchment area was imperviocus at the
centre of the catchment and 100 % meang whole catchment area was

impervicus} for the above numerical experiment.
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Fig. 12: Effect of urbanization on runoff hydrograph.
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It can be seen from figure that as the imperviousness increases
the runoff increases. The runcff hydrograph for 50 % impervious
Curve does not shows that much increment as the 100 % impervious
curve shows, because the impervicus area has been considered in
the centre of the catchment and there iz a pervious area after
the impervious area, so some water infiltrates into the ground.
At the end of the rainfall cthere is a increase in runoff
hydrograph in the 100 % impervious, this is due to the impact of
the rainfall on the friction factor.

5. CONCLUSION

In this study, a two-dimengional surface flow model has been
developed alcng with the one-dimensional subsurface flow medel
for infiltration, for simulation of the overland flow in urban
catchment . In this model, the complete two-dimensional
Saint-Venant equations have been solved using a simple, explicit
finite-volume scheme. The subsurface flew component in the
present model is represented by one-dimensional Richards equation
in the mixed form. This equation has been solved by a recently
developed strongly impliecit finite-difference scheme. The
proposed model does not require the approximation of boundaries
by a stair-case type of grid in case of irregular field shapes.
The depth and the discharge calculations are not staggered and
iterations are not required for the velccity computations.
Therefore, it is computationally more efficient than other
finite-difference schemes.

The medel has been validated separately for surface and
subsurface flow components. Surface flow cbmponent b5y Sretlslseyaryl
using the numerical results of Zhang and Cundy (1989). Here the
two~dimensional surface flow has been used to simulate the
randomly varying surface roughness. The subsurface flow component
has been validated using the results of Hongs et al. (195%4). The
present model has alsc been used to similate the hypothetical
urban catchment with impervious area inside the catchment. The
effect of imperviousness i.e. extent of urbanization, on the
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runoff hydrograph has been presented. In this model, the uniform
infiltration rate has been assumed all over the catchment, which
have same physical soil parameters. This assumption save the
computational time and compute the exact value of the
infiltration which is used for the solution of the surface fiow
equations for surface runoff. This model can be used for the
exact computation of the surface runoff from the urban catchment
considering the seil moisture characteristic of that catchment.

Future Scopes and Suggestions are: This model should be applied
to the real urban catchment considering the soil meoisture
characteristic of that catchment. Routing Subroutine should be
added to this programm so that the runoff hydrograph can be
galculated at any point of the outlet drainage ditches. Another
subroutine for networking of the drainage system should also be
added and design of the suitable drainage system should also be

added to this code.
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APPENDIX I. Notation

C, Courant number;

c i wave speed;

ds, : lengths of the four walls which contour the cell (i,3):

F, : fiumerical flux through the cell face r which contour the
cell (i,3);

5 : frictional resistance coefficient;

g : acceleration due to gravity (m/s?);

h : flow depth (m);

hy  :+ depth of flow for the initial condition

I : volumetric rate of infiltration per unit area {(m/=);

iflag, jflag :represents wave front location in x and y

irection respectively

K(¢) : unsaturated hydraulic conductivity (m/s);

k : length measure of surface roughness;

n : Manning roughness coefficient

n, & n, : unit vectors in x and y directions respectively.

N : total number of grid points in x direction;

6] : total discharge (cumec)

q : discharge per unit width (m?/s);

dini : diecharge specified as the initial condition;

R : volumetric rate of rainfall per unit surface area (m/g);

Re : eynolds number = g/v;

8x & S, : bottom slope in x and y directions respectively;
S¢y & 5¢ : friction slope in x and y directions respectively;
L i time (sec);

U, E, G & § : vectors;

v resultant velgcity (m/s);

v, Darcy flow velocity in the x direction;

A Darcy flow velocity in the z direction;

u& v o :depth averaged velocity c¢omponente in x and v

directions respectively;
X & z: distances along the twe coordinate directions;

o : a positive coefficient;

AR : area of the finite-velume cell {m®);
At : time stepping;

v : Kinematic viscosity cf liquid;

Y : pressure head {m);



Wy : imposed pressure head at the ground surface;
¥, : pressure head at first grid under the ground;
¥y : pressure head at second grid under the ground;
8 : volumetric moisture content.

Bupersacripta
o,E, E* . refers .to the values of the variablea at known time
level, the predicted and the corrected values;

Subecripts
i : refer to the grid point in x-direction;
j : refer to the grid point in y-direction;

r : denotes the walls
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